CS 396: Online Markets

Lecture 2: Online Allocation

Last Time:

- ride sharing problem
- algorithms, online algorithms, mechanisms
- first price auction
- ascending auction
- second price auction

Today:

- course philosophy
- second price auction (cont)
- online allocation: prophet inequality
- online mechanisms: sequential pricing

Exercise: Uniform Expectation

Calculate the expected value of X for $X \sim U[0, 1]$

Course Philosophy

- online markets combines:
 - online algorithm design
 - mechanism design
- lectures:
 - algorithms/mechanisms and proofs
 - goal: learn \mathbf{why} markets work
- projects:
 - hands on experience.
 - goal: learn how theory applies.

Mech 3: second-price auction

- 1. ask buyers to report values.
- 2. winner is highest bidder.
- 3. winner pays second-highest bid.

Thm: bid = value is dominant strategy in secondprice auction

Proof:

Consider bidder i:

- $\hat{v}_i = \max_{j \neq i} b_j$
- if $b_i > \hat{v}_i$:
 - i wins and pays \hat{v}_i
 - utility: $u_i = v_i \hat{v}_i$
- if $b_i < \hat{v}_i$:
 - -i loses and pays 0
 - utility: $u_i = 0$
- consider cases
 - $-v_i > \hat{v}_i$
 - $-v_i < \hat{v}_i$

[PICTURE]

- $b_i = v_i$ is "best" in both cases.
- thus, dominant strategy.

Cor: second-price auction maximizes social welfare

Exercise: Second-price Performance

Setup:

- two buyers, one item
- values U[0,3]
- second price auction

Question: Calculate the seller's expected revenue and the mechanism's expected social welfare (the expected value of the winner)

Online Algorithms

"buyers show up one at a time, must make decision for each buyer before next buyer arrives"

Note: no good algorithm without more information.

Example:

- $\mathbf{v} = (1, 0, \dots, 0)$
- $\mathbf{v}' = (1, 0, \dots, 100)$

Assumption: values are drawn from known probability distributions

$$"v_1 \sim F_1, \ldots, v_n \sim F_n"$$

Example: $F_1 = \ldots = F_n = U[0, 1]$

Online Gambling:

- online gambler faces n games.
- game *i* has prize $v_i \sim F_i$.
- gambler plays games in order:
 - realized prize $v_i \sim F_i$
 - either keeps prize and quits.
 - or discards prize and continues.

Q: what is gambler's optimal strategy?

A: backwards induction

- on day n, take prize
 - $\Rightarrow \mathbf{E}[v_n] = \hat{v}_{n-1}$
- on day n-1, take prize if $v_{n-1} \ge \hat{v}_{n-1}$
 - $\Rightarrow \mathbf{E}[\max(v_{n-1}, \hat{v}_{n-1})] = \hat{v}_{n-2}$
- on day n-2, take prize if $v_{n-2} \ge \hat{v}_{n-2}$
- ...
- \Rightarrow "decreasing sequence of thresholds"

Exercise: Two-day Gamble

Setup:

- n=2 prizes
- uniformly distributed $F_1 = F_2 = U[0, 1]$
- realize first price

• claim it or discard and realize and claim second price

Question: Find optimal strategy. What is its expected payoff? What is its probability of claiming first price?

Comparing online algorithm to optimal offline algorithm

Defn: an online algorithm ALG is a β -approximation to the optimal offline algorithm OPT if

$$\mathbf{E}[ALG(\mathbf{v})] \ge \frac{1}{\beta} \mathbf{E}[OPT(\mathbf{v})]$$

A.k.a. "competitive analysis"

Thm: gambler can used single threshold \hat{v} and obtain expected payoff at least half of expected optimal offline payoff, i.e., 2-approximation.

A.k.a. prophet inequality

"optimal offline payoff" is prophet's payoff (who can see future)"

Proof:

- 0. Notation
 - $\hat{v} = \text{threshold}$
 - $(\cdot)^+ = \max(\cdot, 0)$
 - $\chi = \prod_i \mathbf{P}r[v_i < \hat{v}] = \mathbf{P}r[\text{no prize}]$
 - event $\mathcal{E}_i = \forall j \neq i, \ v_j < \hat{v}$
- 1. upperbound on prophet

 $\mathbf{E}[OPT(\mathbf{v})]$

$$= \mathbf{E}[\max_{i} v_{i}]$$

$$= \hat{v} + \mathbf{E}[\max_{i}(v_{i} - \hat{v})]$$

$$\leq \hat{v} + \mathbf{E}[\max_{i}(v_{i} - \hat{v})^{+}]$$

$$\leq \hat{v} + \mathbf{E}[\sum_{i}(v_{i} - \hat{v})^{+}]$$

$$= \hat{v} + \sum_{i} \mathbf{E}[(v_{i} - \hat{v})^{+}]$$

2. lowerbound on gambler

 $\mathbf{E}[\mathrm{ALG}(\mathbf{v})]$

$$= (1 - \chi) \hat{v} + \mathbf{E}$$
[amount selected prize exceeds \hat{v}]

$$\geq (1 - \chi) \,\hat{v} + \sum_{i} \mathbf{E}[(v_i - \hat{v})^+ | \mathcal{E}_i] \,\mathbf{P}r[\mathcal{E}_i]$$
$$\geq (1 - \chi) \,\hat{v} + \chi \,\sum_{i} \mathbf{E}[(v_i - \hat{v})^+]$$

3. choose $\chi = 1/2$ and combine.

 $\mathbf{E}[ALG(\mathbf{v})] \ge \frac{1}{2}\mathbf{E}[OPT(\mathbf{v})]$

Online Mechanisms

"buyers arrive one at a time and are strategic"

"the eBay 'buy it now' problem"

Idea: use thresholds as prices

Defn: in a **sequential pricing** buyers arrive one at a time and the mechanism offers take-it-or-leave-it while-supplies-last prices

Defn: in a **uniform pricing** is a sequential pricing where all buyers are offered the same price.

Thm: bid = value is dominant strategy in sequential pricing.

Proof:

- each bidder *i* faces threshold \hat{v}_i
- same analysis as second-price auction follows.

Thm: the sequential pricing with prices equal to thresholds from backwards induction maximizes social welfare (among online mechanisms)

Proof: by optimality of thresholds.

Thm: uniform pricing is 2-approximation

Proof: direct corollary of prophet inequality

Summary

Four paradigms for allocating a single-item

- algorithms.
- mechanisms.
- online algorithms.
- online mechanisms.