CS 396: Online Markets
 Lecture 1: Ride Sharing

Topics:

- ride sharing problem
- algorithms, online algorithms, mechanisms
- first price auction
- ascending auction
- second price auction
- secretary algorithm
- secretary pricing

Exercise: Elevator Problem

Setup:

- two elevators: floors 0 and 7
- three riders:
- Alice from 1 to 4
- Bob from 5 to 6
- Charlie from 3 to 2
- cost 1 to move elevator each floor.

Find plan for elevators to minimize total cost

Example: Ride Sharing

"a.k.a., the Uber problem"

input:

- k drivers at initial locations $\left(d_{1}, \ldots, d_{k}\right)$
- n rider request (one at a time):
- origin s_{i}
- destination f_{i}
- driving cost $\left|f_{i}-s_{i}\right|$

output:

- choice of driver to pick up each rider
- goal: minimize total costs.

Note: any driver pays cost $\left|f_{i}-s_{i}\right|$,
\Rightarrow minimizing total cost $=$ minimize pickup cost.

History: original CS motivation reading hard drive with multiple read heads

Algorithm design:

- efficiently compute the optimal assignment.

Two twists:

- drivers need to be incentivized to give rides.
\Rightarrow mechanism design
- riders are not known in advance.
\Rightarrow online algorithms
A.k.a.: online ride share problem is " k-server problem"

Allocating a Single-item

input:

- n buyers with values $\left(v_{i}[1], \ldots, v_{i}[n]\right)$
output:
- winner
- goal: maximize value of winner.

Four paradigms:

- algorithms.
- mechanisms.
- online algorithms.
- online mechanisms.

Algorithms

Alg: Maximum Value

1. loop over buyers.
2. keep track of buyer and value that is "maximum so far".
3. output "maximum so far" buyer.
\qquad

Mechanisms

"buyers are strategic"

Mech 0:

1. ask buyer to report values
2. run maximum value algorithm

Q: how would you bid?
Q: what happens?
A: arbitrary outcome.

Mech 1: first-price auction

1. ask buyers to report values.
2. winner is highest bidder.
3. winner pays their bid.

Q: how would you bid?
Q: what happens?
A: later in course.

Exercise: Place Your Bids

Setup:

- you are bidding in two auctions A and B .
- your opponents' value are $U[0,100]$
- your values v_{A} and v_{B} are $U[0,100]$
- your utility is value minus bid if you win, zero otherwise.

Given your values, determine bids to place in the auctions.
\qquad
Mech 2: ascending auction

1. price ascends
2. until second to last bidder drops
3. remaining bidder wins, pays this price.

Q: how would you bid?
A: drop when price $>$ value
Q: what happens?
A:

- highest valued agent wins
- pays second highest value

Thm: ascending price auction maximizes social welfare

Proof:
social surplus
$=$ total utility of all participants
$=$ seller + winner + losers
$=v_{(2)}+\left(v_{(1)}-v_{(2)}\right)+0$
$=v_{(1)}$

Challenge: generalization to complex environments like ride sharing.

Idea: [Vickrey '61; Nobel Prize] simulate ascending auction with sealed bids.

Mech 3: second-price auction

1. ask buyers to report values.
2. winner is highest bidder.
3. winner pays second-highest bid.

Q: how would you bid?
A: bid your value.
Q: what happens?
A: same as ascending auction.

Thm: bid $=$ value is dominant strategy in secondprice auction

Proof:

Consider bidder i :

- $\hat{v}_{i}=\max _{j \neq i} b_{j}$
- if $b_{i}>\hat{v}_{i}$:
$-i$ wins and pays \hat{v}_{i}
$-u_{i}=v_{i}-\hat{v}_{i}$
- if $b_{i}<\hat{v}_{i}$:
$-i$ loses and pays 0
$-u_{i}=0$
- consider cases
$-v_{i}>\hat{v}_{i}$
$-v_{i}<\hat{v}_{i}$
[PICTURE]
- $b_{i}=v_{i}$ is "best" in both cases.
- thus, dominant strategy.

Online Algorithms

"buyers show up one at a time, must make decision for each buyer before next buyer arrives"

Note: no good algorithm without more information.

Example:

- $\mathbf{v}=(1,0, \ldots, 0)$
- $\mathbf{v}=(1,0, \ldots, 0,100)$

Assumption: values are drawn uniformly between 0 and 100
A.k.a.: online allocation with random order is "secretary problem"

Example: $n=3$
(a) give item to buyer i for some i

$$
\Rightarrow \mathbf{P r}[\text { success }]=1 / 3
$$

(b) look at 1st, condition choice of 2 nd or 3 rd.

- if 2 nd greater than 1 st, give to 2 nd
- else, give to 3rd.
$\Rightarrow \boldsymbol{P r}[$ success $]=1 / 2$

Algorithm: Secretary Alg

1. solicit bids from k buyers, but do not sell.
2. give item to first remaining buyer with value greater than any of first k.

Lemma: For $k=n / 2$ alg is selects highest value w.p. $1 / 4$.
Proof:

- select highest when 2 nd best in first half and 1st best in second half.
- Recall "conditional probability":
$\operatorname{Pr}[A \& B]=\mathbf{P r}[A \mid B] \mathbf{P r}[B]$.
- $\operatorname{Pr}[2$ nd best in first half $]=1 / 2$
- $\operatorname{Pr}[1$ st best in second half \mid 2nd best in first half] $=\frac{n / 2}{n-1} \geq 1 / 2$
$\Rightarrow \mathbf{P r}$ [select highest]
$\geq \operatorname{Pr}[2$ nd in 1 st $1 / 2] \operatorname{Pr}[1$ st in 2 nd $1 / 2 \mid 2$ nd in 1 st $1 / 2] \geq 1 / 4$.
Q: what is best k ?
Thm: for $k=n / e$ alg selects highest buyer with probability $1 / e$
(and this is best possible; recall $e=2.718$)
$321 \quad 312 \quad 132 \quad 231 \quad 213 \quad 123$
(a)
(a)
(b)
(b) (b)

Two algs for example:

Online Mechanisms

Mech: Secretary Pricing

1. solicit bids from k buyers, but do not sell.
2. to remaining buyers, offer price equal to max of first k values, until sold.

Thm: bid = value is dominant strategy.
Thm: $k=n / e$ sells to highest valued buyer with probability $1 / e$

Summary

Four paradigms for allocating a single-item

- algorithms.
- mechanisms.
- online algorithms.
- online mechanisms.

