In this lecture, we saw the following two examples of functions, $f:[n] \rightarrow[2 n]$ such that

$$
f(x)=2 x
$$

and $g:[n] \rightarrow\{$ even, odd $\}$ where

$$
g(x)= \begin{cases}\text { even } & \text { if } x \text { is even } \\ \text { odd } & \text { if } x \text { is odd }\end{cases}
$$

Recall that $[n]=\{1,2, \ldots, n\}$.
We can also interpret f and g as subsets of the Cartesian product, $[n] \times[2 n]$ and $[n] \times\{$ even, odd $\}$ respectively. In particular, we can identify f with the set F defined as

$$
F=\{(a, b) \mid a \in[n], b \in[2 n], 2 a=b\}
$$

and g with the set G defined as

$$
G=\{(a, b) \mid a \in[n], b \in\{\text { even, odd }\}, a \text { is } b\} .
$$

Sometimes thinking about functions in this way will make it easier to prove properties of these functions.

We can also ask if f and g are injective, or surjective. A relation from a set A to a set B is injective if every element $b \in B$ appears in at most one pair in the relation, and is surjective if every element $b \in B$ appears in at least one pair. To show that a relation is surjective, we can consider the set $f^{-1}(b)=\{a \mid f(a)=b\}$, and prove that this set has size at least 1 for every $b \in B$. To show that a relation is injective, we can show that if $f(a)=f(b)$, then $a=b$. To show that a relation is injective, we can also show that the set $f^{-1}(b)=\{a \mid f(a)=b\}$ has size at most 1 for every $b \in B$, but this is sometimes harder to do.

The following theorems answer the question as to which of f and g are injective or surjective.
Theorem 1. The function $f:[n] \rightarrow[2 n]$ such that $f(x)=2 x$ is injective but not surjective.
Proof. If $f(a)=f(b)$, then $2 a=2 b$, and thus $a=b$. Therefore, f is injective.
On the other hand, f is not surjective. To prove this we just need a counterexample, that is, an element $b \in B$ such that the set $f^{-1}(b)$ is empty. One example is 1 , and in particular, the set $\{a \mid f(a)=1\}$ is empty.

Theorem 2. Let n be an integer at least 3. The function $g:[n] \rightarrow\{$ even, odd $\}$ where

$$
g(x)= \begin{cases}\text { even } & \text { if } x \text { is even } \\ \text { odd } & \text { if } x \text { is odd } .\end{cases}
$$

surjective but not injective.

Comp Sci 212
Northwestern
April 20, 2020
Spring 2020

Proof. There are only two elements in the range, even and odd, so to prove that the function f is surjective, we can just consider them one by one. The set g^{-1} (even) $=\{a \mid g(a)=$ even $\}$ contains the element 2 because 2 is even, and $g^{-1}(\mathrm{odd})=\{a \mid g(a)=$ odd $\}$ contains the element 1 because 1 is odd. Thus, g is surjective.

On the other hand, g is not injective. To prove this, we can give a counterexample to the statement that if $g(a)=g(b)$, then $a=b$. In particular, $g(1)=g(3)$, as both 1 and 3 are odd, but it is not true that $1=3$.

Another way to see that g is not injective is to note that $g^{-1}($ odd $)=\{a \mid g(a)=$ odd $\}$ has size at least 2.

