

Mathematical Foundations of Computer Science

Lecture 20: Spanning Trees

Spanning Trees

A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G

Every connected graph has a spanning tree

• Minimal subgraph of given graph G that is connected.

Fact. Every connected graph has at least n-1 edges

Finding Optimal Trees

- Trees have many nice properties (connected, uniqueness of paths, no cycles, etc.).
- Great for Communication, Routing etc.

Problem: An ISP wants to set up the cheapest possible network between *n* people i.e. a tree with smallest communication link costs

Weighted Graphs

Weighted graphs G(V, E, w)

Edges have numbers associated with them, representing costs or extent of relations e.g. maps with distances.

The weights/ costs are all non-negative.

Minimum Spanning Trees (MST)

Problem: Find a minimum spanning tree, that is, a tree on all n vertices of the graph, such that the sum of the edge weights is minimum

Can we do better?

Kruskal's algorithm

- 1. Create a forest (a collection of trees) where each node is a separate tree
- 2. Make a sorted list of edges S (weights are 1, 2, 3, 3.5, 4, 4.5, 5, 8, 10, 20)

- 3. While S is non-empty:
 - a. Pick an edge from S with minimal weight. Remove it from S, and try to include it in tree/forest.
 - b. If it connects two different trees, add the edge. Otherwise discard it.

Thm. Kruskal algorithm outputs a MST

Running the Algorithm

- 1. Create a forest (a collection of trees) where each node is a separate tree
- 2. Make a sorted list of edges S (weights are 1, 2, 3, 3.5, 4, 4.5, 5, 8, 10, 20)
- 3. While S is non-empty:
- a) Take the edge with min. weight in S
- b) If it connects two different trees, add the edge. Otherwise discard it from S.

Proof of Kruskal MST Algorithm

Use Contradiction

Let M be a minimum spanning tree.

The algorithm outputs a spanning tree T. Suppose that it's not minimal.

Let e be the first edge chosen by T (algorithm) that is not in M.

If we add e to M, it creates a cycle. Since this cycle isn't fully contained in T, the cycle has an edge $f \in M$ but not in T.

M' = M + e - f is another spanning tree (why?).

Analyzing the Algorithm

Recall: Algorithm output: T. Minimum spanning tree: M $e \in T \setminus M$ and $f \in M \setminus T$

Claim: Suppose M' = M + e - f is another spanning tree, then $cost(e) \le cost(f)$, and therefore $cost(M') \le cost(M)$

Proof. Suppose not: cost(e) > cost(f).

Then *f* visited before *e* by algorithm. But *f* not added: it would have formed cycle

But all of these cycle edges are also edges of M, since e was the first edge not in M.

Hence *M* has a cycle!

This contradicts the assumption that M is a tree (claim) and that M is minimal (theorem)

Distinct edge weights

Claim: If the edge weights are distinct, there exists a unique minimum spanning tree

Proof: Use contradiction. Assume that there exist two minimum spanning trees, M and N, that are different.

Let e be the smallest edge in N but not in M. Then M+e contains a cycle.

Let f be an edge in the cycle, and therefore in M, but not in N.

Then either M+e-f must have a smaller weight than M, or N+f-e must have a smaller weight than N