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Spanning Trees

A spanning tree of a graph G is a tree that touches every node 
of G and uses only edges from G

Every connected graph has a 
spanning tree

• Minimal subgraph of given 

graph G that is connected. 

𝐺(𝑉, 𝐸)

Fact. Every connected graph has at least 𝑛 − 1 edges



Finding Optimal Trees

• Trees have many nice properties (connected, uniqueness of 
paths, no cycles, etc.). 

• Great for Communication, Routing etc.

Problem: An ISP wants to set up 
the cheapest possible network 

between 𝑛 people i.e. a tree with 
smallest communication link 

costs



Weighted Graphs

Weighted graphs 𝐺(𝑉,𝐸, 𝑤)

Edges have numbers associated 
with them, representing costs or 

extent of relations e.g. maps with 
distances. 

The weights/ costs are all non-

negative. 

𝐺(𝑉, 𝐸)



Minimum Spanning Trees (MST)

Problem:  Find a minimum spanning tree, that is, a tree 
on all n vertices of the graph, such that the sum of the 

edge weights is minimum

Can we do better?

𝐺(𝑉, 𝐸)𝐺(𝑉, 𝐸)



Kruskal’s algorithm

1. Create a forest (a collection of trees) 
where each node is a separate tree

2. Make a sorted list of edges S
(weights are 1, 2, 3, 3.5, 4, 4.5, 5, 8, 10, 20)

3. While S is non-empty:

a. Pick an edge from S with minimal 
weight. Remove it from S, and try to 

include it in tree/forest. 

b. If it connects two different trees, 
add the edge.  Otherwise discard it.

Thm. Kruskal algorithm outputs a MST

𝐺(𝑉, 𝐸)



Running the Algorithm

1. Create a forest (a collection of trees) 
where each node is a separate tree

2. Make a sorted list of edges S
(weights are 1, 2, 3, 3.5, 4, 4.5, 5, 8, 10, 20)

3. While S is non-empty:

a) Take the edge with min. weight in S

b) If it connects two different trees, add 
the edge.  Otherwise discard it from S.

𝑣1 𝑣2

𝑣3

𝑣4

𝑣5

𝑣6𝑣7

𝐺(𝑉,𝐸)
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Proof of Kruskal MST Algorithm

Use Contradiction

Let 𝑀 be a minimum spanning tree.

Let 𝑒 be the first edge chosen by T (algorithm) 
that is not in 𝑀. 

𝑀′ = 𝑀 + 𝑒 − 𝑓 is another spanning tree (why?).

The algorithm outputs a spanning tree 𝑇.  

Suppose that it’s not minimal. 

If we add 𝑒 to 𝑀, it creates a cycle.  Since this cycle isn’t fully 
contained in 𝑇, the cycle has an edge 𝑓 ∈ 𝑀 but not in 𝑇.

𝑣1 𝑣2

𝑣3

𝑣4

𝑣5

𝑣6𝑣7
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Analyzing the Algorithm

Proof. Suppose not:  𝑐𝑜𝑠𝑡 𝑒 > 𝑐𝑜𝑠𝑡 𝑓 .

Then 𝑓 visited before 𝑒 by algorithm. But 
f not added: it would have formed  cycle

But all of these cycle edges are also edges of 
𝑀, since 𝑒 was the first edge not in 𝑀.  

Hence 𝑀 has a cycle!

𝑣1 𝑣2

𝑣4

𝑣5

𝑣6𝑣7

Recall: Algorithm output: 𝑇 .  Minimum spanning tree: 𝑀
𝑒 ∈ 𝑇 \ 𝑀 𝑎𝑛𝑑 𝑓 ∈ 𝑀 \ 𝑇

e
f

3.5

𝑣3

Claim: Suppose 𝑀′ = 𝑀 + 𝑒 − 𝑓 is another spanning tree, then

𝑐𝑜𝑠𝑡 𝑒 < 𝑐𝑜𝑠𝑡(𝑓), and therefore cost(𝑀′) < 𝑐𝑜𝑠𝑡(M)

This contradicts the assumption that M is a tree (claim) 
and that M is minimal (theorem)



Distinct edge weights

Claim: If the edge weights are distinct, there exists a unique 
minimum spanning tree

Proof: Use contradiction. Assume that there exist two 
minimum spanning trees, M and N, that are different.

Let e be the smallest edge in N but not in M. Then M+e

contains a cycle.

Let f be an edge in the cycle, and therefore in M, but not in N.

Then either M+e-f must have a smaller weight than M, or N+f-
e must have a smaller weight than N


