

Mathematical Foundations of Computer Science

Lecture 20: Spanning Trees

Spanning Trees

A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G

Every connected graph has a spanning tree

- Minimal subgraph of given graph G that is connected.

Fact. Every connected graph has at least $n-1$ edges

Finding Optimal Trees

- Trees have many nice properties (connected, uniqueness of paths, no cycles, etc.).
- Great for Communication, Routing etc.

Problem: An ISP wants to set up the cheapest possible network between n people i.e. a tree with smallest communication link costs

Weighted Graphs

Weighted graphs $G(V, E, w)$
Edges have numbers associated with them, representing costs or extent of relations e.g. maps with distances.

The weights/ costs are all nonnegative.

Minimum Spanning Trees (MST)

Problem: Find a minimum spanning tree, that is, a tree on all n vertices of the graph, such that the sum of the edge weights is minimum

Can we do better?

Kruskal's algorithm

1. Create a forest (a collection of trees) where each node is a separate tree
2. Make a sorted list of edges S (weights are $1,2,3,3.5,4,4.5,5,8,10,20$)
3. While S is non-empty:
a. Pick an edge from S with minimal weight. Remove it from S, and try to include it in tree/forest.
b. If it connects two different trees, add the edge. Otherwise discard it.

Thm. Kruskal algorithm outputs a MST

Running the Algorithm

1. Create a forest (a collection of trees) where each node is a separate tree

2. Make a sorted list of edges S
(weights are $1,2,3,3.5,4,4.5,5,8,10,20$)
3. While S is non-empty:
a) Take the edge with min. weight in S
b) If it connects two different trees, add the edge. Otherwise discard it from S.

Proof of Kruskal MST Algorithm

Use Contradiction
Let M be a minimum spanning tree.
The algorithm outputs a spanning tree T. Suppose that it's not minimal.

Let e be the first edge chosen by T (algorithm)
 that is not in M.

If we add e to M, it creates a cycle. Since this cycle isn't fully contained in T, the cycle has an edge $f \in M$ but not in T.
$M^{\prime}=M+e-f$ is another spanning tree (why?).

Analyzing the Algorithm

Recall: Algorithm output: T. Minimum spanning tree: M $e \in T \backslash M$ and $f \in M \backslash T$
Claim: Suppose $M^{\prime}=M+e-f$ is another spanning tree, then $\operatorname{cost}(e) \leq \operatorname{cost}(f)$, and therefore $\operatorname{cost}\left(M^{\prime}\right) \leq \operatorname{cost}(\mathrm{M})$
Proof. Suppose not: $\operatorname{cost}(e)>\operatorname{cost}(f)$. Then f visited before e by algorithm. But f not added: it would have formed cycle But all of these cycle edges are also edges of M, since e was the first edge not in M. Hence M has a cycle!

This contradicts the assumption that M is a tree (claim) and that M is minimal (theorem)

Distinct edge weights

Claim: If the edge weights are distinct, there exists a unique minimum spanning tree

Proof: Use contradiction. Assume that there exist two minimum spanning trees, M and N , that are different.

Let e be the smallest edge in N but not in M. Then M+e contains a cycle.
Let f be an edge in the cycle, and therefore in M, but not in N .
Then either M+e-f must have a smaller weight than M, or N+fe must have a smaller weight than N

