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The following Chernoff bound applies to independent random variables.

Theorem 1. Let X1, . . . , Xn be independent random variables such that E[Xi] = 0 and |Xi| ≤ 1
for all i. Then,

Pr[X1 + · · ·+ Xn ≥ u
√
n] ≤ exp(−u2/(4e)).

Proof. The left-hand side can be rewritten as,

Pr[exp(t(X1 + · · ·+ Xn)) ≥ exp(ut
√
n)] ≤ E[exp(t(X1 + · · ·+ Xn))]

exp(ut
√
n)

for some positive t to be chosen later. The inequality follows by Markov’s inequality. Additionally,
we have that

E[exp(t(X1 + · · ·+ Xn))] =

n∏
i=1

E[exp(tXi)] (1)

by the independence of the Xi. We have that
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)
if 0 ≤ t ≤ 1. Thus, we can upper bound Eq. (1) by exp(t2en). Thus the upper bound on the
probability is exp(t2en− tu

√
n) which gives the desired bound by setting t = u/(2e

√
n).


