The following Chernoff bound applies to independent random variables.
Theorem 1. Let X_{1}, \ldots, X_{n} be independent random variables such that $\mathbb{E}\left[X_{i}\right]=0$ and $\left|X_{i}\right| \leq 1$ for all i. Then,

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{n} \geq u \sqrt{n}\right] \leq \exp \left(-u^{2} /(4 e)\right)
$$

Proof. The left-hand side can be rewritten as,

$$
\operatorname{Pr}\left[\exp \left(t\left(X_{1}+\cdots+X_{n}\right)\right) \geq \exp (u t \sqrt{n})\right] \leq \frac{\mathbb{E}\left[\exp \left(t\left(X_{1}+\cdots+X_{n}\right)\right)\right]}{\exp (u t \sqrt{n})}
$$

for some positive t to be chosen later. The inequality follows by Markov's inequality. Additionally, we have that

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(t\left(X_{1}+\cdots+X_{n}\right)\right)\right]=\prod_{i=1}^{n} \mathbb{E}\left[\exp \left(t X_{i}\right)\right] \tag{1}
\end{equation*}
$$

by the independence of the X_{i}. We have that

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(t X_{i}\right)\right] & =\mathbb{E}\left[1+t X_{i}+\frac{t^{2} X_{i}^{2}}{2!}+\frac{t^{3} X_{i}^{3}}{3!}+\cdots\right] & & \text { (Taylor series) } \\
& =1+t \mathbb{E}\left[X_{i}\right]+\frac{t^{2} \mathbb{E}\left[X_{i}^{2}\right]}{2!}+\frac{t^{3} \mathbb{E}\left[X_{i}^{3}\right]}{3!}+\cdots & & \text { (Linearity of expectation) } \\
& =1+\frac{t^{2} \mathbb{E}\left[X_{i}^{2}\right]}{2!}+\frac{t^{3} \mathbb{E}\left[X_{i}^{3}\right]}{3!}+\cdots & & \left(\mathbb{E}\left[X_{i}\right]=0\right) \\
& \leq 1+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\cdots & & \left(\left|X_{i}\right| \leq 1\right) \\
& \leq 1+\frac{t^{2}}{2!}+\frac{t^{2}}{3!}+\cdots & & (t \leq 1) \\
& \leq \exp \left(e t^{2}\right) & & \left(\frac{1}{2!}+\frac{1}{3!}+\cdots \leq e, 1+x \leq \exp (x)\right)
\end{aligned}
$$

if $0 \leq t \leq 1$. Thus, we can upper bound Eq. (1) by $\exp \left(t^{2} e n\right)$. Thus the upper bound on the probability is $\exp \left(t^{2} e n-t u \sqrt{n}\right)$ which gives the desired bound by setting $t=u /(2 e \sqrt{n})$.

